
Flow in pipes 

Consider the flow of an incompressible viscous fluid in a full pipe. In the 
preceding chapter efforts were made analytically to find the relationship 
between the velocity, pressure, etc., for this case. In this chapter, however, 
from a more practical and materialistic standpoint, a method of expressing 
the loss using an average flow velocity is stated. By extending this approach, 
studies will be made on how to express losses caused by a change in the cross- 
sectional area of a pipe, a pipe bend and a valve, in addition to the frictional 
loss of a pipe. 

Lead city water pipe (Roman remains, Bath, England) 
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Sending water by pipe has a long history. Since the time of the Roman 
Empire (about 1 B c )  lead pipes and clay pipes have been used for the water 
supply system in cities. 

Consider a case where fluid runs from a tank into a pipe whose entrance 
section is fully rounded. At the entrance, the velocity distribution is roughly 
uniform while the pressure head is lower by u2/2g (u: average flow velocity). 

Since the velocity of a viscous fluid is zero on the wall, the fluid near the 
wall is decelerated. The range subject to deceleration extends as the fluid 
flows further downstream, until at last the boundary layers develop up to the 
pipe centre. For this situation, shown in Fig. 7.1, the section from the 
entrance to just where the boundary layer develops to the tube centre is called 
the inlet or entrance region, whose length is called the inlet or entrance 
length. For the value of L, there are the following equations: 

Laminar flow: 

computation by Boussinesq 
experiment by Nikuradse L = 0.065Red 

L = O.06Red computation by Asao, Iwanami and Mori 

Turbulent flow: 

L = 0.693Re1I4d computation by Latzko 
L = (25 - 40)d experiment by Nikuradse 

Downstream of the inlet region, the static pressure of the pipe line as 
measured by the liquid column gauge set in the pipe line turns out, as shown 
in Fig. 7.1, to be lower by H than the water level of the tank, where 

1 v2 v2 H = A - - + t -  
d 2 s  2s 

l ( l / d ) ( u 2 / 2 g )  expresses the frictional loss of head (the lost energy of fluid per 
unit weight). [(u2/2g) expresses the pressure reduction equivalent to the sum 
of the velocity stored when the velocity distribution is fully developed plus 
the additional frictional energy loss above that in fully developed flow 
consumed during the change in velocity distribution. 

The velocity energy of the fluid which has attained the fully developed 
velocity distribution when x = L is 

E = 2 x r u y d r  PU2 (7.2) 

E is calculated by substituting the equations for the velocity distribution for 
laminar flow (6.32) into u of this equation. The velocity energy for the same 
flow at the average velocity is 
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(4 
Fig. 7.1 Flow in a circular pipe: (a) laminar flow; (b) turbulent flow; (c) laminar flow (flow visualisation 
using hydrogen bubble method) 

nd2 pv2 E' = -0-  
4 2  

Putting E/E' = [ gives ( = 2. For the case of turbulent flow, ( is found to be 
1.09 through experiment. r is known as the kinetic energy correction factor. 

The velocity head equivalent to this energy is 

E uz 
(7.3) - r- and2upg 29 

This means that, to compensate for this increase in velocity head when the 
entrance length reaches L, the pressure head must decrease by the same 

-- 
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amount. Furthermore, with the extra energy loss due to the changing velocity 
distribution included, the value of 5 turns out to be much larger than [. 
t(u2/2g) expresses how much further the pressure would fall than for 
frictional loss in the inlet region of the pipe if a constant velocity distribution 
existed. With respect to the value of 5 ,  for laminar flow values of 5 = 2.24 
(computation by Boussinesq), 2.16 (computation by Schiller), 2.7 (experiment 
by Hagen) and 2.36 (experiment by Nakayama and Endo) were reported, 
while for turbulent flow 5 = 1.4 (experiment by Hagen on a trumpet-like tube 
without an entrance). 

Let us study the flow in the region where the velocity distribution is fully 
developed after passing through the inlet region (Fig. 7.2). If a fluid is flowing 
in the round pipe of diameter d at the average flow velocity u, let the pressures 
at two points distance 1 apart be p1 and p2  respectively. The relationship 
between the velocity u and the loss head h = ( p l  - p2)/pg is illustrated in 
Fig. 7.3, where, for the laminar flow, the loss head h is proportional to the 
flow velocity u as can clearly be seen from eqn (6.37). For the turbulent flow, 
it turns out to be proportional to YI, '~"~.  

The loss head is expressed by the following equation as shown in eqn 
(7.1): 

Fig. 7.2 Pipe frictional loss 
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(a) (b) 

Fig. 7.3 Relationship between flow velocity and loss head 

(7.4) 
1 v2 

d2g  
h = 1-- 

This equation is called the Darcy-Weisbach equation', and the coefficient 1 
is called the friction coefficient of the pipe. 

7.2.1 Laminar flow 

In this case, from eqns (6.37) and (7.4), 

(7.5) 

No effect of wall roughness is seen. The reason is probably that the flow 
turbulence caused by the wall face coarseness is limited to a region near the 
wall face because the velocity and therefore inertia are small, while viscous 
effects are large in such a laminar region. 

P 64 
pvd Re 

A = @ - = -  

7.2.2 Turbulent flow 

1 generally varies according to Reynolds number and the pipe wall 
roughness. 

Smooth circular pipe 
The roughness is inside the viscous sublayer if the height E of wall face 
ruggedness is 

E 5 5 v / v  (fluid dynamically smooth) (7.6) 

I In place of I ,  many British texts use 4f in this equation. Since friction factor f = 1/4, it is 
essential to check the definition to which a value of friction factor refers. The symbol used is not 
a reliable guide. 
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From eqn (6,45) and Fig. 6.15, no effect of roughness is seen and 1 varies 
according to Reynolds number only; thus the pipe can be regarded as a 
smooth pipe. 

In the case of a smooth pipe, the following equations have been developed: 
equation of Blasius: A = 0.3164Re-’I4 (Re = 3 x lo3 - 1 x lo’) 
equation of Nikuradse: 

equation of K6rmin-Nikuradse: 

(7.7) 

1 = 0.0032 + 0.221Re-0.237 (Re = IO5 - 3 x lo6) (7.8) 

1 = 1/[2loglO(Re4) - 0.812 (Re = 3 x lo3 - 3 x lo6) (7.9) 

(7.10) 

By combining eqn (7.4) with (7.7), the relationship h = CU’.’~ (here c is a 
constant) arises giving the relationship for turbulent flow in Fig. 7.3. 

Rough circular pipe 
From eqn (6.51) and Fig. 6.15, where 

E ? 70v/v,  (fully coarse) (7.1 1) 
the wall face roughness extends into the turbulent flow region. This defines 
the rough pipe case where I is determined by the roughness only, and is not 
related to Reynolds number value. 

To simulate regular roughness, Nikuradse performed an experiment in 
1933 by iacquer-pasting screened sand grains of uniform diameter onto the 
inner wail of a tube, and obtained the result shown in Fig. 7.4. 

0.314 
0.7 - 1.65 log,,(Re) + (log,, Re)2 

equation of Itaya:2 A = 

Fig. 7.4 Friction coefficient of coarse circular pipe with sand grains 

* Itaya, M., Journal of JSME, 48 (1945), 84. 
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Fig. 7.5 Moody diagram 

Fig. 7.6 Roughness of commercial pipe 
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According to this result, whenever Re > 900(~/d), it turns out that 

1 
[1.74 - 210g,,(2&/d)]~ 

A =  (7.12) 

The velocity distribution for this case is expressed by the following 
equation: 

U/V, = 8.48 + 5.75 lOgl0(y/&) (7.13) 

For a pipe of irregular coarseness found in practice, the Moody diagram3 
shown in Fig. 7.5 is applicable. For a new commercial pipe, I can be easily 
obtained from Fig. 7.5 using e / d  in Fig. 7.6. 

In the case of a pipe other than a circular one (e.g. oblong or oval), how 
can the pressure loss be found? 

Where fluid flows in an oblong pipe as shown in Fig. 7.7, let the pressure 
drop over length I be h, the sides of the pipe be a and b respectively, and the 
wall perimeter in contact with the fluid on the section be s, where the shearing 
stress is z,,, the shearing force acting on the pipe wall of length 1 is Izos, and 
the balancing pressure force is pghA. Then 

pghA = Z , S ~  (7.14) 

This equation shows that for a given pressure loss zo is determined by A / s  
(the ratio of the flow section area to the wetted perimeter). A / s  = m is called 
the hydraulic mean depth (see Section 8.1). In the case of a filled circular 
section pipe, since A = (n/4)d2, s = nd, the relationship m = d/4 is obtained. 
So, for pipes other than circular, calculation is made using the following 
equation and substituting 4m (which is called the hydraulic diameter) as the 
representative size in place of d in eqn (7.4): 

Fig. 7.7 Flow in oblong pipe 

Moody, L.F. and Princeton, N.J., Transactions of the ASME, 66 (1944), 671. 
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1 u2 
h = 1-- 

4m 29 1 = f ( R e ,  &/4m) (7.15) 

Here, assuming Re = 4mu/v, &/d  = &/4m may be found from the Moody 
diagram for a circular pipe. Meanwhile, 4m is described by the following 
equations respectively for an oblong section of a by b and for co-axial pipes 
of inner diameter d, and outer diameter d2: 

(7.16) 

In a pipe line, in addition to frictional loss, head loss is produced through 
additional turbulence arising when fluid flows through such components as 
change of area, change of direction, branching, junction, bend and valve. The 
loss head for such cases is generally expressed by the following equation: 

(7.17) 

u in the above equation is the mean flow velocity on a section not affected 
by the section where the loss head is produced. Where the mean flow velocity 
changes upstream or downstream of the loss-producing section, the larger 
of the flow velocities is generally used. 

7.4.1 Loss with sudden chanqe of area 

Flow expansion 
The flow expansion loss h, for a suddenly widening pipe becomes the 
following, as already shown by eqn (5.44): 

In practice, however, it becomes 

or as follows: 

0: 

29 
h, = c- 

2 

i = l ( l - 2 )  

(7.18) 

(7.19) 

(7.20) 

(7.21) 

Here, ( is a value near one. 
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At the outlet of the pipe as shown in Fig. 7.8, since u2 = 0, eqn (7.19) 
becomes 

(7.22) 0: h, = 5- 
2g 

Fig. 7.8 Outlet of pipe line 

Flow contraction 
Owing to the inertia, section 1 (section area A,) of the fluid (Fig. 7.9) shrinks 
to section 2 (section area AJ, and then widens to section 3 (section area 
A2). The loss when the flow is accelerated is extremely small, followed by a 
head loss similar to that in the case of sudden expansion. Like eqn (7.18), it is 
expressed by 

2 

(7.23) 

Here Cc = AJA,  is a contraction coefficient. For example, when A 2 / A ,  = 0.1, 
C, = 0.61.4 

h, = 29 = (2 - 1)2$ = (& - *)2g ( O C  - 4 

Fig. 7.9 Sudden contraction pipe 

4 Summarised in Donald S. Miller Internal Flow Systems, British Hydromechanics Research 
Association (1978). 
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Fig. 7.10 Inlet shape and loss factor 

Inlet ofpipe line As shown in Fig. 7.10, the loss of head in the case where 
fluid enters from a large vessel is expressed by the following equation: 

(7.24) 

In this case, however, 5 is the inlet loss factor and v is the mean flow 

V2 
h, = [- 

29 

velocity in the pipe. The value of [ will be the value as shown in Fig. 7.10e5 

Throttle A device which decreases the flow area, bringing about the extra 
resistance in a pipe, is generally called a throttle. There are three kinds of 
throttle, i.e. choke, orifice and nozzle. If the length of the narrow section is 
long compared with its diameter, the throttle is called a choke. Since the 
orifice is explained in Sections 5.2.2 and 11.2.2, and a nozzle is dealt with in 
Section 1 1.2.2, only the choke will be explained here. 

The coefficient of discharge C in Fig. 7.11 can be expressed as follows, as 
eqn (5.25), where the difference between the pressure upstream and 
downstream of the throttle is Ap: 

Q = c -  - (7.25) 

and C is expressed as a function of the choke number 0 = Q/vl .  C is as shown 
in Fig. 7.12, and is expressed by the following equations:6 if the entrance is 

nd2 4 e 
5 Weisbach, J., Ingenieur- und Machienen-Mechanik, I (1896), 1003. 
6 Hibi, et al., Joumalof the Japan HydrauIics & Pneumatics Society, 2 (1971), 12.  
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Fig. 7.11 Choke 

\-, 

Fig. 7.12 Coefficient of discharge for cylindrical chokes: (a) entrance rounded; (b) entrance not 
rounded 

rounded: 

(7.26) 
1 

1.16 + 6.25a?' 
C= 

and if the entrance is not rounded: 

C =  (7.27) 
1 

1 + 5.3/,b 
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7.4.2 Loss with gradual change of area 

Divergent pipe or diffuser 
The head loss for a divergent pipe as shown in Fig. 7.13 is expressed in the 
same manner as eqn (7.19) for a suddenly widening pipe: 

2 

(7.28) 

The value of 5 for circular divergent pipes is shown in Fig. 7.14.7 The value 
of < varies according to 8. For a circular section t = 0.135 (minimum) when 
8 = 5"30'. For the rectangular section, < = 0.145 (minimum) when 0 = 6", 
and 5 = 1 (almost constant) whenever 8 = 50"-60" or more. 

For a two-dimensional duct, if 0 is small the fluid flows attaches to one of 
the side walls due to a wall attachment phenomenon (the wall effect).' In the 
case of a circular pipe, when 8 becomes larger than the angle which gives 
the minimum value of 5, the flow separates midway as shown in Fig. 7.15. 
Owing to the turbulence accompanying such a separation of flow, the loss of 
head suddenly increases. This phenomenon is visualised in Fig. 7.16. 

A divergent pipe is also used as a diffuser to convert velocity energy into 
pressure energy. In the case of Fig. 7.13, the following equation is obtained 
by applying Bernoulli's principle: 

( V I  - u2) 

29 
h, = t 

Fig. 7.13 Divergent flow 

' Gibson, A. H., Hydraulics, (1952), 91, Constable, London; Uematsu, T., Bulletin of JSME, 2 
(1936), 254. 
8 An adjacent wall restricts normal flow entrainment by a jet. A fall in pressure results which 
deflects the jet such that it can become attached to the wall. This is called the Coanda effect, 
discovered by H. Coanda in 1932. The effect is the basic principle of the technology of fluidics. 
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Fig. 7.14 Loss factor for divergent pipes 

Fig. 7.15 Velocity distribution in a divergent pipe 

Fig. 7.16 Separation occurring in a divergent pipe (hydrogen bubble method), in water; inlet velocity 
6 cmls, Re (inlet port) = 900, divergent angle 20' 
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P1 v: P2 4 
P9 29 P9 29 
-+- = -+-+ h, 

Therefore 
2 2  

hs (7.29) €72 - PI 01 - 02  ---- - 
P9 29 

Putting pzth for p 2  for the case where there is no loss, 

(7.30) P2th - P1 0: - 0: -- - 
PS 29 

The pressure recovery efficiency q for a diffuser is therefore 

(7.31) P2-P1 - 1 - h s  q = - -  
P2th - PI (0: - U:)/2s 

Substituting in eqn (7.28), the above equation becomes 

(7.32) 1 - Al/A2 
1 + Al/A2 

- 1 - 5  q = 1 - c-- 01 - 02 

01 + 02 

Convergent pipe 
In the case where a pipe section gradually becomes smaller, since the pressure 
decreases in the direction of the flow, the flow runs freely without extra 
turbulence. Therefore, losses other than the pipe friction are normally 
negligible. 

7.4.3 Loss whenever the flow direction changes 

Bend 
The gently curving part of a pipe shown in Fig. 7.17 is referred to as a pipe 

Fig. 7.17 Bend 
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Table 7.1 Loss factor [ for bends (smooth wall Re = 225 000, coarse wall face Re = 146 000) 

Wall face 8" R / d =  1 2 3 4 5 

Smooth 15" 0.03 0.03 0.03 0.03 0.03 
22.5" 0.045 0.045 0.045 0.045 0.045 
45" 0.14 0.14 0.08 0.08 0.07 
60" 0.19 0.12 0.095 0.085 0.07 
90" 0.21 0.135 0.10 0.085 0.105 

Coarse 90" 0.51 0.51 0.23 0.18 0.20 

bend. In a bend, in addition to the head loss due to pipe friction, a loss due 
to the change in flow direction is also produced. The total head loss hb is 
expressed by the following equation: 

V2 
h b -  - c 2 g  .-+,,!)E d 29 (7.33) 

Here, c b  is the total loss factor, and [ is the loss factor due to the bend effect. 
The values of 5 are shown in Table 7.1 .' 

In a bend, secondary flow is produced as shown in the figure owing to the 
introduction of the centrifugal force, and the loss increases. If guide blades 
are fixed in the bend section, the head loss can be very small. 

Elbow 

Fig. 7.18 Elbow 

9 Hoffman, A., Mtt. Hydr. Inst. T. H. Miinchen, 3 (1929), 45; Wasielewski, R. Mitt, Hydr. Inst 
T. H. Miinchen, 5 (1932), 66. 
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As shown in Fig. 7.18, the section where the pipe curves sharply is called an 
elbow. The head loss h, is given in the same form as eqn (7.33). Since the flow 
separates from the wall in the curving part, the loss is larger than in the case 
of a bend. Table 7.2 shows values of [ for elbows." 

Table 7.2 Loss factor for elbows 

eo 5" 10" 15" 22.5" 30" 45" 60" 90" 
~~~ 

[ Smooth 0.016 0.034 0.042 0.066 0.130 0.236 0.471 1.129 
Coarse 0.024 0.044 0.062 0.154 0.165 0.320 0.687 1.265 

7.4.4 Pipe branch and pipe iunction 

Pipe branch 
As shown in Fig. 7.19, a pipe dividing into separate pipes is called a pipe 
branch. Putting h,, as the head loss produced when the flow runs from pipe 0 
to pipe 0, and h,, as the head loss produced when the flow runs from pipe 
0 to pipe 0, these are respectively expressed as follows: 

(7.34) 

Since the loss factors cl, c2 vary according to the branch angle 8, diameter 
ratio dl/d2 or d , / d ,  and the discharge ratio QI/Q2 or Q , / Q 3 ,  experiments were 
performed for various combinations. Such results were summarised." 

Pipe junction 
As shown in Fig. 7.20, two pipe branches converging into one are called a 
pipe junction. Putting hs2 as the head loss when the flow runs from pipe 0 to 
pipe 0, and h,, as the head loss when the flow runs from pipe @ to pipe 0, 
these are expressed as follows: 

Values of cl and 5,  are similar to the case of the pipe branch. 

(7.35) 

Kirchbach, H. und Schubart, W., Mitt. Hydr. Inst. T. H. Miinchen, 2 (1929), 12; 3 (1929), 
121. 
" Vogel G., Mitt. Hydr. Inst. T. M .  Munchen, 1 (1926), 75;  2 (1928), 61; Peter-Mann, F., Mitt. 
Inst. T. H. Miinchen, 3 (1929), 98. 
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fig. 7.19 Pipe branch Fig. 7.20 Pipe junction 

7.4.5 Valve and cock 

Head loss on valves is brought about by changes in their section areas, and 
is expressed by eqn (7.17) provided that u indicates the mean flow velocity at 
the point not affected by the valve. 

Gate valve 
The valve as shown in Fig. 7.21 is called a gate valve. Putting d as the 
diameter and d‘ as the valve opening, [ varies according to d‘ ld .  Table 7.3 
shows values of [ for a 1 inch (2.54cm) nominal diameter valve.” 

Fig. 7.21 Gate valve 

I’ Corp, C.I., Bulletin of the University of Wisconsin, Engineering Series, 9-1 (1922), 1. 
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Globe valve 
Table 7.4 shows values of 5 for the globe valve shown in Fig. 7.22, at various 
openings.13 

Table 7.3 Values for ( for 1 inch gate valves (d = 25.5 mm) 

d' ld  118 114 318 112 314 1 

i 21 1 40.3 10.15 3.54 0.882 0.233 

Table 7.4 Values of c for 1 inch screw-in globe valves (d = 25.5 mm) 

l ld  114 112 314 1 

t; 16.3 10.3 7.63 6.09 

Fig. 7.22 Globe valve 

Butterfly valve (Fig. 7.23) 
Table 7.5 shows values of 5 for a butterfly valve.14 As the inclination angle 8 
of the valve plate increases, the section area immediately downstream of the 
valve suddenly increases, bringing about an increased value of [. 

l 3  Oki, I., Suirikiguku (Hydraulics), 344, Iwanami, Tokyo. In addition, for popet valves, 
Ichikawa, T. and Shimizu, T., 31 (1965), 317; Kasai, K., Trans. JSME, 33 (1967), 1088. 

Weisbach, J., Ingenieur- und Meschienen-Mechunik, I (1896). 1050. 14 



130 Flow in pipes 

Fig. 7.23 Butterfly valve 

Table 7.5 Values of [ for circular butterfly valves 

8" 10" 20" 30" 50" 70" 

Z 0.52 1.54 3.91 32.6 75 1 

For a circular butterfly valve, when 8 = O", the value of [ is 
c = t / d  (7.36) 

Cock (fig. 7.24) 
Table 7.6 shows values of [ for a cock. For cocks, too, as angle 8 increases, 
large changes in section area of flow are brought about, increasing the value 
of [. 

Fig. 7.24 Cock 

Table 7.6 Values of [for cocks 

8" 10" 30" 50" 60" 

I 0.29 5.47 52.6 206 
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Other valves 
Values of [ for various valves are shown in Table 7.7.15 

Table 7.7 Loss factor for various valves 

Valve Loss coefficients, 5 

Relief valve 

h / d  0.05 0.1 0.15 0.2 0.25 0.3 
[ 3.35 2.85 2.4 2.4 1.7 1.35 

Disc valve Throttle area a = ndx 
Section area of valve seat hole A = nd2/4 
When x = d/4 a = A 
Loss coefficient [ = 1.3 + 0.2(A/a)* 

Needle valve a = n(dx tan 012 - x2 tan2 0/2) 
A x  = 0 when x = 0 
[ = 0.5 + O.IS(A/a)* 

Ball valve a N 0.751cdx 
[ = 0.5 + O.l5(A/a)’ 

Spool valve At full open position 
[ = 3 - 5.5 

7.4.6 Total loss along a pipe line 

For a pipe with flow velocity u, inner diameter d and length 1, the total loss 
from pipe entrance to exit is 

h =  ( f i  A-+C[ )% - (7.37) 

I s  Yeaple, F. D., Hydraulic and Pneumatic Power Control, (1966), 89, McGraw-Hill, New York. 
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The first term on the right expresses the total loss by friction, while C C(o2/2g) 
represents the sum of the loss heads at such sections as the entrance, bend and 
valve. Whenever a pipe line consists of pipes of different diameters, it is 
necessary to use the appropriate valve for the flow velocity for each pipe. 

When two tanks with a water-level differential h are connected by a pipe 
line, the exit velocity energy is generally lost. Therefore, 

h =  n2+Ci+1 - (7.38) 

However, when the pipe line is long such that f/d > 2000 and it has no valves 
of small opening etc., losses other than frictional loss may be neglected. 

Conversely, if h is known, the flow velocity could be obtained from eqn 
(7.37) or eqn (7.38). 

In general, for urban water pipes, ZI = 1.0 - 1.5m/s is typical for long pipe 
runs, while up to approximately 2,5m/s is typical for short pipe runs. For 
the headrace of a hydraulic power plant, 2 - 5 m/s is the usual range. 

( '  ): 

A pump can deliver to higher levels since it gives energy to the water (Fig. 
7.25). The head H across the pump is called the total head. The differential 

Fig. 7.25 Storage pump: H total head; Ha actual head; /-/a,s suction head; 4 . d  discharge head; h, 
losses on suction s; hd losses on discharge side 
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height Ha between two water levels is called the actual head and 

H = H a + h  (7.39) 

where h is the sum of h, and hd expressing the total loss. 
The volume of water which passes through a pump in unit time is called 

the pump discharge. Since the energy which a pump gives water in a unit time 
is H per unit weight, the energy Lw given to water per unit time is 

L ,  = pgQH (7.40) 

This is sometimes known as the water horsepower. 
The power L,  needed by a pump is called the shaft horsepower: 

LWIL, = v (7.41) 

where q is the efficiency of the pump. Since the energy supplied to a pump is 
not all transmitted to the water due to the energy loss within the pump, it 
turns out that q < 1. 

As shown in Fig. 7.26, the curve which expresses the relationship between 
the pump discharge Q and the head H is called the characteristic curve or 
head curve. In general, the head loss h is proportional to the square of the 
mean flow velocity in the pipe, and therefore to the square of the pump 
discharge, and is called the resistance curve. It must be summed with Ha to 
give the pump load curve. 

The pump discharge is given, as shown in Fig. 7.26, by the intersecting 
point of the head curve and this load curve. 

Fig. 7.26 Total head and load curve of pump 
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1. Verify that the kinetic energy for laminar flow in a circular pipe with a 
fully developed velocity distribution is twice that with uniform velocity. 

2. What is the relationship between the flow velocity and the pressure loss 
in a circular pipe? 

3. For laminar flow in a circular pipe, verify that the pipe frictional 
coefficient can be expressed by the following equation: 

I I  = 64/Re 

4. For turbulent flow in a circular pipe, show that, assuming the pipe 
frictional coefficient is subject to I I  = 0.3l64Re-'l4, the pressure loss is 
proportional to a power of 1.75 of the mean flow velocity. 

5.  For flow in a circular pipe, with constant pipe friction coefficient, show 
that the frictional head loss is inversely proportional to the fifth power of 
the pipe diameter. Also, if the diameter is measured with a% error, what 
would be the percentage error in head loss? 

6. How much head loss will be produced by sending 0.5m3/min of water a 
distance of 2000m using commercial steel pipes of diameter 5 0 m ?  
Also, what would be the head loss if the diameter is lOOmm? The water 
temperature is assumed to be 20°C. 

7. What is the necessary shaft horsepower to send lm3/min of water 
through a conduit l00mm in diameter as shown in Fig. 7.27? Assume 
pump efficiency q = 80%, loss coefficient of sluice valve 5, = 0.175, of 90" 
elbow cs0 = 1.265, of 45" elbow Cd5 = 0.320, and pipe frictional coefficient 
I I  = 0.026. 

Fig. 7.27 

8. A flow of 0.6m3/s of air discharges through a square duct of sides 
20 cm. What is the pressure loss if the duct length is 50 m? Assume an air 
temperature of 2 0 T ,  standard atmospheric pressure, and smooth walls 
for the duct. 
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9. Water flows through a sudden expansion where a circular pipe of 
40 mm diameter is directly connected to one of 80 mm. If the discharge is 
0.08 mm3/min, find the expansion loss. 

10. Obtain the head loss and the pressure recovery rate when a circular pipe 
of 40mm diameter is connected to one of 80mm diameter by a IO" 
diffuser. 


